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SUMMARY 
A method is outlined for solving two-dimensional transonic viscous flow problems, in which the velocity 
vector is split into the gradient of a potential and a rotational component. The approach takes advantage of 
the fact that for high-Reynolds-number flows the viscous terms of the Navier-Stokes equations are 
important only in a thin shear layer and therefore solution of the full equations may not be needed 
everywhere. Most of the flow can be considered inviscid and, neglecting the entropy and vorticity effects, a 
potential model is a good approximation in the flow core. The rotational part of the flow can then be 
calculated by solution of the potential, streamfunction and vorticity transport equations. Implementation of 
the no-slip and no-penetration boundary conditions at the walls provides a simple mechanism for the 
interaction between the viscous and inviscid solutions and no extra coupling procedures are needed. Results 
are presented for turbulent transonic internal choked flows. 
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INTRODUCTION 

The problem of numerical simulation of viscous compressible flows is a difficult one. For two- 
dimensional flows over aerofoils a boundary layer is developed adjacent to the solid surface and 
interacts with the shock waves. The standard methods for the calculation of such phenomena are 
based on the time-dependent form of the Navier-Stokes equations using explicit finite difference 
methods based on the MacCormack scheme' or implicit ones based on the Beam and Warming 
algorithm.2 An alternative approach based on viscous-inviscid interaction procedures has been 
proposed by many auth01-s.~ - These methods can be essentially classified in three categories: 
direct, inverse and semi-inverse or quasi-simultaneous. While the classical direct method of 
solving boundary layers with a prescribed pressure gradient is well known to be limited to weak 
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interaction problems, solving the boundary layer equations in the inverse mode may not be 
recommended for separated transonic flows. The semi-inverse method and the simultaneous 
iterative methods have been developed to avoid the difficulties of the above two approaches and 
have been tested with reasonable success. Unfortunately, these methods are not necessarily very 
efficient for general problems. 

In the present work a new approach is presented that takes advantage of the fact that for high- 
Reynolds-number flows most of the flow can be considered inviscid and, neglecting the entropy 
and vorticity effects, a potential model is a good approximation in the flow core. In the viscous 
region it is proposed to combine potential calculations with the stream function-vorticity 
formulation to produce an approximate Navier-Stokes solver. 

Unlike viscous-inviscid interaction methods, no explicit coupling procedure is needed in the 
present approach. The difficulties, in separated flow cases, associated with solving direct bound- 
ary layer equations with specified pressure gradients are hence avoided. Moreover, the present 
method allows for a pressure variation across the viscous layer. 

In the following sections, details of the method are discussed and its numerical implementation 
by a finite element technique is demonstrated. 

PROBLEM DESCRIPTION AND GOVERNING EQUATIONS 

According to the Helmholtz theorem, any velocity vector can be decomposed into the gradient of 
a scalar and a rotational component: 

Q = V @ + V  x Alp. (1) 
The first term is curl-free, while the second is divergence-free. For 2D problems the following 
decomposition could be used without loss of generality: 

u = @x + $ y / P ,  lJ = 3 - $ x / P s  (2) 

where $ is a perturbation stream function allowing for rotational effects. 
The continuity equation becomes 

( P @ A  + ( P q J ,  = 0. 

( $ x / P ) x  + ($,/P), = - 

(3) 

(4) 

The perturbation stream function-vorticity ($-a) system is governed by the following equations: 

v Z O l ~ ) - ~ e C ( P ~ x + $ , ) o x + ( P c p , - $ ~ ) o y + ~ , l  +2$=07 (5 )  
where 

s, = P A U X Y  + U y y )  - P&XX + VXY) - Pxy(% - 0,) + PXXUY - PyylJ,. 

In the present work the term $ is considered small and is neglected. 

u is a prescribed profile; hence 
The formulation is completed with the following boundary conditions (Figure 1). At the inlet, 

an = given, (64 
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--om EDGE OF V I S C O U S  REGION 

Figure 1. hoposed viscous-inviscid approach (@-+a) and its boundary conditions 

At the exit, the streamlines are parallel 

O=O, 

$n=O,  

0, = 0. 

v = o ,  

u=o. 

At a solid stationary or moving surface, 

In terms of Q, and ~, equations (8a) and (8b) are imposed as follows: 

P@n=$s, 

$n lP=-  @s. 

$=O, 

$n=O, 

0=0 .  

At the edge of the viscous layer, 

Weak-Galerkin formulation 

A weighted residual finite element procedure is used to discretize the equations. The weighted 
residual forms of the equations are 
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where W,, W, and W3 are weight functions. The weight function W, is chosen as N", W2 is 
chosen as N*, while W3 is chosen as N", where N", N* and Nu are the finite element shape 
functions. Since the vorticity is the derivative of the velocity, it is preferable to use bilinear shape 
functions for N", i.e. the vorticity is to be represented at four corners, while N* and N* are chosen 
as biquadratic, i.e. the potential and the stream function are to be represented at eight nodes. The 
geometry is described by eight nodes. Hence 

8 8 4 

1 1 1 
rCI=CN? (5, q)*i, w=CNY(Q ?)mi, (W @=x *(<, q)@i, 

where (5, q)  are the non-dimensional co-ordinates of the parent (undistorted) finite element. The 
weak form is obtained after the integration by parts of equations (IlaHllc). This yields 

P( ~1 x@x + w1, @ y ) d ~  - w1 (Pan) ds =o, (134 

(13W 

s 
[ [ (~2~*x/p+ ~2 ,*y /P-  w , U ) ~ A -  s K($n/P)&=o, 

1 1 { ~ 3 ~ ( ~ 0 ) . +  ~ 3 , o ~ o ) y +  w , ~ e [ ( P @ x + ~ l , ) o x + ( p ~ y - * x ) o y + ~ , ~ ) d ~  ~ 3 k ) n & = o -  

(134 
-1 

Newton linearization 

Using the Newton method, the linearized equations for the change in the variables @, $ and o 
are 

Jj[wl=(PA@)x+ W , y ( P A ~ ) y l d A = - R l ,  ( 144 

~[CWZX(Al),/P+ Wz,(A*h/P- W,AwldA=-R2, (14W 

[1{w3x(PA0),+ W,,bAo),+ ~ , ~ ~ ~ * , ~ ~ ~ ~ x + ~ x ~ ~ ~ ~ , - $ x ~ ~ ~ ~ , - ~ , ~ ~ $ ~ * + P @ x ~ ~ x  

+ pay Ao,]} dA = - R,, (14~) 
where R,,  R2 and R, are the residuals of equations (3), (4) and ( 5 )  respectively. 

Substituting the shape functions, one obtains 
8 

j= l  
C KlijA#j=-R1i, (153) 

where 
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where 

and 

where 

A A 

~.~j=~{{w,,gc,~,’+p~~)+ ~ 3 i , ~ ~ y + p ~ ; )  

+ Re w3i C W x  + $ y ) N z  + (pay - 1 1 d A, 

K,,=~jRelW, , (o ,N~-oyNfX)]dA.  

The terms of the influence matrix must be integrated numerically. A typical term of the influence 
matrix is evaluated as 

where both [ 53 and [ 53 - are explicitly calculated at the Gaussian points of each element and 
the numerical integration is carried out using 3 x 3 Gaussian integration points. 

BOUNDARY CONDITIONS 

At the inlet and exit the Dirichlet boundary conditions for both the stream function and vorticity 
(6b, 6c, 7a) are accounted for in the standard way, while the Neumann boundary conditions 
(6a, 7b, 7c) make the contour integrals vanish. 

For the remaining boundary conditions a difficulty exists since there are three conditions on $ 
and w at the edge of the viscous region and no explicit condition on w at the solid surface. If the 
($*)-equations are solved simultaneously, it is not important how the boundary conditions are 
introduced in the matrix. Taking advantage of this, the rows of unknown vorticities on the walls 
are replaced by condition (IOa), while conditions (lob) and (1Oc) are implemented in a standard 
way. One should note that this completely avoids the need for wall vorticity formulae. The no-slip 
condition (9b) is implemented by replacing $“/p in (13b) by its iteratively calculated value; hence 
the contour integral becomes 

+ W,@,dS. (1 7) s 
The contour integral of (13a) is carried out analytically at the inlet and calculated at the walls 
from the stream function field at every iteration as 

r 
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which bears similarity to a transpiration boundary condition in viscous-inviscid interaction 
methods. 

A note should be added here about boundary conditions for the velocity potential for choked 
flows. Since the velocity potential formulation in the core does not allow for an entropy rise, the 
shock position is arbitrary since the only pressure that can be achieved at the exit is the isentropic 
one. To allow for non-isentropic flow, it is shown in Reference 9 that a Dirichlet boundary 
condition on 0 must be imposed at the exit and its value must be iterated upon until the imposed 
back-pressure is satisfied by the numerical solution. 

SOLUTION METHODOLOGY 

Updating the pressure 

The pressure can be obtained from the following relation: 

p = [I- i ( y  - 1)M2, ( 0 2  x + y - 1 )I y m -  1) /YMZ,. (19) 
This dispenses with the solution of an equation for the pressure at the expense of neglecting the 
viscous contribution to the pressure variation across the boundary layer. Should a more exact 
solution be needed, a method discussed in Reference 10 for determining the pressure from a 
Poisson equation could be used. 

Updating the density 

Under the assumption of constant total enthalpy, 

yp/(y- 1)p + t . ( U 2 + U 2 ) = H 0 3 .  (20) 
The density is obtained from this equation once the pressure has been determined. Equation (20), 
while exact for inviscid flows, is a reasonable approximation for the viscous energy equation in 
the absence of heat exchange. This should not be construed as a limitation of the present method, 
since the complete energy equation can be solved without difficulty if needed. One should note 
that the density assumes its profile in the boundary layer and reduces smoothly to the isentropic 
relationship in the potential core. 

For supersonic points the density p in the potential equation is replaced by a shifted density 
to add the artificial viscosity necessary for shock wave simulation: 

Pe  = P e  - A p e  - Pe - 11, p=max(o, 1-(1/it4:), 1 -(l/hfz-l)). (21) 
Note that the potential equation is the only equation in which artificial viscosity is introduced. 

Turbulence modelling 

To include the effects of turbulence, the Baldwin-Lomax model is used." This model does not 
require the specification of a boundary layer thickness and hence presents particular advantages 
for internal flows. Details of the model will not be given here; they are outlined in Reference 10. 
However, it should be noted that the distance from the wall, which appears often as a parameter 
of turbulence models, is measured in the present work by moving away from the wall along 
equipotential lines obtained from the initial solution of (14a). 

Solution strategy 

The procedure consists of solving the ($*)-system simultaneously, while the @-solution is 
lagged. The problem is started at Re=O and marched through Re= 10" from n = 1 to the 
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target Re. The turbulent viscosity is updated at every iteration. The pressure and density are 
obtained from (19) and (20). The ($-a)-calculations are limited only to a relatively thin layer 
near the walls with a fine mesh, dictated by resolution and accuracy requirements. The velocity 
potential, defined throughout the field, can be solved on a coarse grid and interpolated if required 
onto the finer ($*)-grid. 
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RESULTS 

Results of the method are presented for compressible and transonic internal flows. The first 
example is comparison between the present approach and the (Y-0) full Navier-Stokes method 
of Reference 11 for subsonic viscous calculations. Next are calculations in choked nozzles with a 
comparison against the result of the viscous-inviscid interaction method of Le Balleur.' 

1 .o 

.a 
a 

.o - 

R (in.) 

Figure 3. Comparison of Mach number profiles at trailing edge of bump: proposed approach (*$-a) and full 
Navier-Stokes (Yw) 
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Symmetric nozzles are chosen for the test cases, with the inlet velocity profile being a uniform 
flow with a Coles profile near each wall. Figures 2 and 3 compare the (@-$-+results with those 
obtained using the full Navier-Stokes stream function-vorticity method of Reference 11 for the 
flow over a bump and indicate good agreement between the two methods. This lends credence to 
the present pressure approximation which avoids the solution of a Poisson equation for pressure. 
For subsonic flow, convergence to a residual of lop6 is achieved in 15 iterations. 

An example of the calculation of a choked flow in the same symmetric nozzle is shown in 
Figure 4. The inlet Re is 100 O00 and the figure shows the Mach number contours at convergence 
indicating choking of the flow. The grid used is 30 x 27 elements. Convergence to a residual of 

is achieved in 100 iterations. The velocity profiles are shown in Figure 5. The corresponding 
inviscid solution is shown in Figure 6. 

A comparison with the viscous-inviscid procedure of Le Balleur’ in the case of the choked duct 
is shown in Figure 7. The present approach displays some shock smearing because of the cruder 
grid that had to be used, 67 x 27 for the entire flow, while the grid used by Le Balleur has 100 grid 

Figure 4, Choked viscous channel flow: Mach number contours for present viscowinviscid approach (@++o) 

Figure 5. Choked viscous channel flow: Velocity profiles for present viscous-inviscid approach (@-t,h-w) 
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Figure 6. Choked inviscid channel flow: Mach number contours by potential solution (@) 

O A O L  
ooo 000 0 0 

.46-- 
o EXPERIMENT 

- - - -  VISCOUS-INVISCID 
INTERACTIONS REF[6] 

PRESENT METHOD 0.40 - 
0.30 

1 .o 1 .s 2.0 2.s 
X 

Figure 7. Comparison of wall pressure distribution for choked channel flow by viscous-inviscid interaction procedures: 
present approach (@-+-a) versus Le Balleur’ 

points in the flow direction and his computational domain is restricted to only the shock 
wave-boundary layer interaction region. However, despite the differences in mesh size, the 
methods show good agreement in pressure distribution along the wall. 

CONCLUSIONS 

It is shown that the application of a finite element method to a system of second-order equations 
for the velocity potential, the stream function and the vorticity can lead to efficient viscous flow 
calculations, with results comparable to Navier-Stokes solutions of high-Reynolds-number 
transonic flows. Stable solutions can be obtained with no upwinding for subsonic flows and with 
only upwinding in the potential equation for transonic flows. Moreover, explicit wall vorticity 
formulae are completely dispensed with. 

This approach can be considered as a generalization of viscous-inviscid interaction procedures, 
with no boundary layer co-ordinates needed and no boundary layer approximations used. 
Moreover, the matching between the outer inviscid flow and the inner viscous region is 
automatic. This fact is manifested in the density determination, which reduces to the isentropic 
relationship in the potential core while capturing the boundary layer behaviour in the viscous 
regions. 
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An additional feature of this approach is the explicit calculation of the pressure from the 
velocity potential. While not describing the pressure profile inside the viscous region exactly, such 
an approximation is more accurate than the usual assumption of uniform pressure across the 
boundary layer. Should a more exact evaluation of pressure be required, a Poisson equation with 
natural boundary conditions can be solved. 
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APPENDIX NOMENCLATURE 

domain area 
enthalpy 
influence matrix 
residual norm = ZR2 
Mach number 
finite element shape function 
outward normal to boundary 
pressure 
speed 
residual of a differential equation 
Reynolds number 
distance along boundary of domain 
Cartesian velocity components 
Cartesian co-ordinates 
weight function for weighted residual method 

Greek symbols 

A change in a quantity 
CD velocity potential 
Y isentropic exponent 
P viscosity 
P, i j  
JI perturbation streamfunction 
w 

density and shifted density respectively 

vorticity (w = u, - u,,) 

Subscripts 

i. e 
n, s 
XY Y 
00 free-stream value 

nodal and element index respectively 
derivative normal to and along boundary respectively 
x- and y-derivative respectively 
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